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How to Simulate a Trebuchet Part 1: Lagrange’s Equations 
The trebuchet has quickly become a favorite project for physics and engineering teachers seeking to 
provide students with a simple – but spectacular – hands-on design project.  The trebuchet itself is a 
simple device, easy (and forgiving) to build, and entirely powered by gravity.  The major parts of the 
traditional trebuchet are shown schematically in the figure above.  The projectile is held in a sling 
suspended from the hook on one side of the trebuchet arm.  The counterweight is hung on the other 
(usually shorter) side of the arm.  The arm rotates on a pivot which is rigidly mounted onto the base. 
 

 
 
To launch the projectile, the counterweight is raised until the hook rests on the ground and then 
released.  As the counterweight falls, the arm rotates (clockwise, in the diagram above) and the sling 
whips around until the projectile is released.  The angle of the hook is critical here – the projectile is 
released when the sling and hook are aligned.  The series of “cartoons” above illustrates this 
principle. 
 
The purpose of this paper is to develop a dynamic model of the trebuchet that is easy to implement 
in software, whether it be in Matlab, C++, or (as with the website) Javascript.  We will use the 
Lagrangian approach to dynamic systems, which involves developing expressions for the kinetic and 
potential energy of the system at a given configuration.  The website contains models of several 

Arm Counterweight

Projectile

Hook

Pivot

Sling

Base



2 
 

different trebuchets, from the very simple 1DOF model to the fully-developed floating-arm 
trebuchet.  In this paper we will trace the development of the 3DOF model (the traditional 
trebuchet) in great detail.  The important results for the other trebuchets are given at the end of the 
paper, and the interested reader can consult the appendices for details of their derivation. 
 
The Lagrangian approach to dynamics has the advantage of being relatively simple to implement, 
even if the derivation of Lagrange’s equation is nontrivial (and the subject of most first-year graduate 
dynamics courses).  The interested reader can refer to Ginsberg [1] for a clear development of the 
method or to Lanczos [2] for much of the philosophy behind the approach.  The method for 
handling constraints used here is presented by Haug [3] and is the same as that used in many 
commercial codes.  In my opinion, the presentation of Lanczos is the clearest of the lot, and is an 
excellent starting point for the study of analytical dynamics. 
 
This paper is not the place for a full development of the Lagrange method, but it is worth noting 
that most explanations of the method seem to err on the side of being either too general and 
philosophical for immediate application, or too cumbersome for intelligibility.  Here I have tried to 
present the method as it is applied to a specific problem, the trebuchet, in the hopes that the reader 
might find it easier to move from the specific to the general, rather than vice versa.  People seem to 
learn best through induction, and that is the approach I have chosen here. 

Lagrange’s Equation – The Short Version 
I present here a very short derivation of Lagrange’s equation so as to familiarize the reader with the 
notation and the method.  The development starts by stating Hamilton’s principle, which is derived 
from the principle of virtual work.  We define the “action integral”, which computes the total 
difference between kinetic and potential energy in a system over the time interval t1 to t2. 
 
 � = ��� − ��	


	�
� (1) 

 
 

 
 
Consider the path of a single particle as it moves between times t1and t2 as shown in the bold curve 
in the figure above.  Now imagine perturbing that path slightly, so that it lies along the fainter line.  
Note that we only perturb the path between the two endpoints; the positions at the endpoints must be 
the actual positions.  What is the effect of this perturbation on the action integral for the particle? 
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	�
� (2) 

 
Here we introduce the δ-operator, which defines the variation of a quantity.  In this case, we are 
interested in the variation in the action integral produced by small perturbations of the paths of the 
particles.  The δ operator is very similar to the d operator in differential calculus, with the exception 
that time is held constant with the δ operator.  In differential calculus, the minimum (or maximum) 
value of a function is found when its derivative is zero.  In similar fashion the action integral takes 
on a stationary (usually minimum) value when evaluated for the actual path, so that the variation of 
the action integral is zero for the actual path.  Thus, Hamiltion’s principle can be written 
 
 � ��� − ��	


	�
� = 0 (3) 

 
The commutative property of the variation process can be used to write 
 
 ���� − ���	


	�
� = 0 (4) 

 
The potential energy of the system, V, is a function of the positions of the bodies in the system: 
 
 � = ����, ��, … , ��� (5) 
 
where we use q to denote the generalized coordinates of the system.  Each q might correspond to the 
angular position of one part of the trebuchet, or the height of another part.  In contrast, the kinetic 
energy is a function of both the positions and velocities of the system 
 
 � = ����, ��, … , ��, ���, ���, … , ���� (6) 
 
In general, the potential and kinetic energies might also be explicit functions of time, but this is not 
the case for the trebuchet.  Using the chain rule (which also applies to the δ operator), the variations 
of the kinetic and potential energies can be written 
 
 �� = ����� ��� + ����� ��� + ⋯+ ����� ��� (7) 

 
 �� = ����� ��� + ����� ��� + ⋯+ ����� ��� + ������ ���� + ������ ���� + ⋯+ ������ ���� (8) 

 
Combining these two terms and using summation notation gives the integral 
 



4 
 

 � ������� ��� + ������ ���� − ����� ���� ��
���

	

	�

= 0 (9) 

 
The second term in the integral may be simplified slightly by using integration by parts, which will 

eliminate the ���� term from the integral: 
 
 � ������ �����	


	�
= ������ ����	�

	
 − � �� �������� ����	

	�

 (10) 

 
Recall that the perturbations in the coordinates are zero at times t1 and t2, so that we have: 
 
 � ������ �����	


	�
= − � �� �������� ����	


	�
 (11) 

 
and the complete integral becomes 
 
 � ������� ��� − �� �������� ��� − ����� ���� ��

���
	


	�
= 0 (12) 

 
The integration by parts has enabled us to collect similar terms of δqi such that 
 
 � � ����� − �� �������� − �����! �����

���
	


	�
= 0 (13) 

 
It is convenient at this point to multiply the equation above by -1, to put it into the more standard, 
well-known form: 
 
 � ���� �������� − ����� + ������ �����

���
	


	�
= 0 (14) 

 
As noted previously, the variations in the paths of the q between times t1 and t2 are arbitrary – we 
apply fictitious perturbations to the paths of each body in order to assess the effect on the action 
integral of the system.  The integral equation above must sum to zero, regardless of which functions 
we choose to perturb the q’s.  The only way to ensure that the integral sums to zero is to force each 
term inside the summation to be zero.  Thus, we have a set of n equations, one for each qi. 
 
 �� �������� − ����� + ����� = 0 (15) 
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This is the famous Lagrange’s equation, which applies to any dynamic system whose kinetic and 
potential energy functions (and constraint equations) are not explicit functions of time.  In an 
unconstrained problem, we would be required to solve all n of these equations simultaneously.  The 
solution is rather simple to implement in a “cookbook” fashion, as will be seen below. 
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Figure 1: The projectile is in contact with the ground during the first few moments of launch. 

 

How to Handle Constraints 
The differential equations above are sufficient to model the motion of the unconstrained trebuchet.  
However, there are certain times during the motion of the trebuchet during which not all 
coordinates are independent.  For example, the initial moments of the trebuchet launch has the 
projectile resting on the ground, as shown in Figure 1 above.  In order that the projectile not pass 
through the ground, the angle of the sling, ψ, must be dependent upon the angle of the arm, θ, and 
vice versa.  We can write a trigonometric relation between the two quantities as 
 
 −"# sin' + "� sin ( = ℎ* (16) 

 
where l3 is the length of the sling, l2 is the length of the arm (from pivot to hook) and h0 is the height 
of the pivot.  It would seem that we could use equation (16) to eliminate one of the variables, either 
ψ or θ, and reduce the system to n-1 degrees of freedom.  In practice, however, this would result in a 
very complicated expression involving an inverse trigonometric function: 
 
 ' = sin+� �"� sin ( − ℎ*"# �	 (17) 

 
Substitution of this into the equations of motion (and performing all the differentiations) would be 
cumbersome, to say the least.  It is far more efficient to retain all of the generalized coordinates, 
keeping the problem at n degrees of freedom, and use another method to handle the constraints.  
Luckily, the Lagrange multiplier method is quite suited to the trebuchet problem. 
 

The Method of Lagrange Multipliers 
Let us first rewrite Equation 16 by moving all nonzero terms to the left-hand side 
 
 ℎ* − "� sin ( + "# sin' = 0 (18) 

 
For the trebuchet problem (and for many other problems in dynamics), it is always possible to write 
the constraint equations in this form: 
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 -���, �� …��� = 0 (19) 

 
In general (e.g. for the floating-arm trebuchet), we may have a set of constraint equations, instead of 
just one 
 
 . = /-�-�⋮-12 = 3 (20) 

 
but for the present, let us assume that we have only one constraint equation.  Generalization to m 
constraint equations is straightforward, once the method for handling constraints is known.  If we 
perturb the generalized coordinates, then the variation of the constraint equation is found through 
the chain rule as 
 
 �- = �-��� ��� + �-��� ��� + ⋯+ �-��� ��� = 0 

(21) 

 
If we multiply both sides of this equation by an unknown multiplier, λ, we have 
 
 4 ∙ �- = 4 � �-��� ��� + �-��� ��� + ⋯+ �-��� ���� = 0 (22) 

 
where λ is known as a Lagrange multiplier.  It may appear as though we have made our lives more 
complicated by introducing an unknown function, λ, but we will see that this method actually 
simplifies the constraint problem considerably.  Collect all terms using summation notation. 
 
 �4 �-��� ���

�
��� = 0 (23) 

 
Since the above summation adds to zero, we may freely add it to the summation in Equation (14), 
since we are really just adding zero. 
 
 � 6�� �� �������� ��� − ����� ��� + ����� ���� + �4 �-��� ���

�
���

�
��� 7 �	


	�
= 0 (24) 

 
but both summations are taken over the same indices, and so may be combined. 
 
 � ���� �������� ��� − ����� ��� + ����� ��� + 4 �-��� �����

��� �	

	�

= 0 (25) 

 

And finally, the common factor ��� may be taken outside the parentheses. 
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 � �� �� �������� − ����� + ����� + 4 �-���� ���

�
��� �	


	�
= 0 (26) 

 
We apply the same argument as before: namely, that the only way to guarantee that the integral 

vanishes for arbitrary perturbations ��� is to force each term of the summation to be zero. 
 
 �� �������� − ����� + ����� + 4 �-��� = 0 (27) 

 
It probably seemed like a mysterious (and possibly useless) thing to do when we introduced the 
Lagrange multiplier in Equation (22).  After all, what utility could adding zero to an equation 
possibly have?  In the modified Lagrange’s equation above, however, we see that the unknown 
multiplier has added an additional term to the left-hand side to account for the constraint equation. 
 
The units on each of the terms in Equation (27) are those of force (or torque).  But the derivative of 
the constraint equation is dimensionless, since we are differentiating a function of generalized 
coordinates (length) with respect to a generalized coordinate (length).  Thus, the units of λ are also 
those of force (or torque). Although we will not prove it here, the Lagrange multipliers are 
proportional to the forces necessary to maintain the constraints.  It is easy to generalize Equation 
(27) to account for multiple constraint equations: 
 
 �� �������� − ����� + ����� + 4� �-���� + 4� �-���� + ⋯+ 41 �-1��� = 0 (28) 

 
As before, we define f to be the vector of constraint equations, and λ the vector of Lagrange 
multipliers.  Then the equation of motion for generalized coordinate i is 
 
 �� �������� − ����� + ����� + �.���

8 9 = 0 (29) 

 

Matrix Form of the Equations of Motion 
Let us examine more closely each of the terms in Equation 29.  Expanding the time derivative in the 
first term gives 
 
 �� �������� = ���� �������� ��� + ⋯ ���� �������� ��� + ����� �������� �:� + ⋯ ����� �������� �:� (30) 

 
The first terms contain generalized coordinates and velocities, while the second term is a linear 
combination of the accelerations.  Let us define the following quantities 
 
 ;� = < ����� �������� ����� �������� ⋯ ����� ��������= (31) 
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 >� = − ���� �������� ��� − ���� �������� ��� − ⋯− ���� �������� ��� (32) 

 
Then the first term in Equation (29) can be written 
 
 �� �������� = ;�?: − >� (33) 

 
In similar fashion we define 
 
 ℎ� = ����� − ����� (34) 

 
Substituting these into Equation (29) gives the equation of motion for generalized coordinate i. 
 
 ;�?: + �.���

8 9 = >� + ℎ� (35) 

 
There will be n of these equations, each corresponding to a single generalized coordinate qi.  To 
solve the n equations simultaneously, we combine them into a single, matrix equation 
 
 @?: + �.�?8 9 = A + B (36) 

 

where M is the inertia matrix of the system, �./�? is the Jacobian matrix of the constraint 
functions, and g and h are vectors of the remaining velocity and position terms after the 
differentiations in Equations (32) and (34) have been performed. 
 

It appears that we have n equations of motion, but n + m unknowns (the set of ?:  and λ).  We thus 
require m additional equations to solve the problem.  Conveniently, the constraint equations (Eq. 20) 
provide just such a set.  As discussed earlier, the nonlinearity of the constraint equations makes them 
difficult to use in eliminating variables.  However, there is a trick we can use to get around this 
difficulty.  By differentiating the constraint equations twice with respect to time, we can arrive at a 

set of constraint equations in terms of accelerations (?: ) that are easy to solve.  Since Equation (36) is 
also in terms of accelerations, we can combine the two sets for a single matrix equation. 
 
Recall that the set of constraint equations is written 
 
 . = /-�-�⋮-12 = 3 (37) 

 
where each constraint equation is in terms of the generalized coordinates, q.  Taking the derivative 
of this equation with respect to time gives 
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 �.� = �.�??� + �.� = 0 (38) 

 
The second term goes to zero because (we assume) the contraints are not explicit functions of time.  
Thus 
 
 �.�??� = 0 (39) 

 
Differentiating once again gives the acceleration terms 
 
 ��.�� = ��? ��.�??� � ?� + �.�??: = 0 (40) 

 
where again the partial derivatives with respect to time have been eliminated.  We can solve for the 
accelerations 
 
 �.�??: = − ��? ��.�??� � ?� ≡ E (41) 

 
and we combine Equations (36) and (41) to give 
 

 

FGG
GH@ �.�?8
�.�? 0 IJJ

JK L?:9M = <A + BE = (42) 

 
Since there are m constraints, we now have the m + n equations that we require.  These are the 

equations of motion that we solve to obtain the accelerations ?:  and Lagrange multipliers λ.  After 
solving for the accelerations, we use numerical integration to find the velocities and positions of the 
bodies.  The Lagrange multipliers are used to assess the current situation regarding the constraints.  
The flowchart below gives a procedure for implementing the solution on a computer. 
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