
  
 
 

How to Simulate a Trebuchet Part 3: The Floating-Arm Trebuchet 
The illustration above gives a diagram of a “floating-arm” trebuchet.  The floating-arm type is 
distinct from the ordinary trebuchet in that its arm has no fixed pivot; that is, it “floats” during a 
launch.  The main reason for doing this is to permit the counterweight to move in a straight line 
downwards, rather than revolving about a fixed point.  In doing this, a higher proportion of the 
gravitational potential energy of the counterweight is available for increasing the kinetic energy of 
the projectile, rather than increasing the rotational kinetic energy of the counterweight. 
 
The figure above right shows a bench-scale floating-arm trebuchet, courtesy of Woodworkers 
Workshop.  There are two rollers which are important for the motion of the arm.  The fixed roller is 
attached to the end of the horizontal rail, and the arm roller is attached to the arm near the 
counterweight.  
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The Motion of the Floating-Arm Trebuchet 
The launch sequence of the floating-arm trebuchet is shown in the three figures above.  First, the 
throwing arm rests on a fixed roller, which is pinned to the horizontal support.  As the 
counterweight descends, the arm slides over the fixed roller.  When the throwing arm is roughly 
horizontal, the moving roller contacts the horizontal support.  The combination of the moving roller 
support and the vertical counterweight slot creates a “whipping” effect that significantly increases 
the angular velocity of the throwing arm.  In the final stage of the sequence, the projectile leaves the 
launch ramp and swings around the end of the throwing arm.  The sling release mechanism works in 
the same way as a traditional trebuchet, and the projectile is released when the sling ropes become 
parallel with the hook. 
 
To summarize, we have three distinct situations to consider when modeling the floating-arm 
trebuchet: arm on fixed roller, arm on moving roller and projectile on ramp.  Each of these will be 
dealt with using constraint equations, as shown below. 
 
 

Modeling the Floating-Arm Trebuchet 
There are a number of different models we could choose for the floating-arm trebuchet.  When the 
projectile is on the ramp, the system has one degree of freedom (DOF).  For example, specifying the 
angle of the throwing arm constrains the configuration of the rest of the system.  When the 
projectile is above the ramp, the system has two degrees of freedom (e.g. throwing arm angle and 
sling angle).  If we choose, we can develop the equations of motion using only these one or two 
generalized coordinates – this is the 2DOF model.  We may also choose to retain the full set of five 
degrees of freedom (height of counterweight, x and y coordinates of projectile, arm angle and sling 
angle) and use constraint equations to eliminate the redundant coordinates. 
 
Intuitively, one might expect the 2DOF approach to lead to a much simpler numerical 
implementation, with much more compact code and faster execution.  Unfortunately, the 2DOF 
model seems to encounter difficulties in switching from one set of constraints to another, especially 
when the moving roller begins to rest on the fixed horizontal track.  The resulting animations tend 
to be rather jerky, or sometimes unstable.  This is the reason for adopting the full 5DOF model with 
constraints that is developed below.  The reasons behind the poor performance of the 2DOF model 
are unclear to this author, and are a subject for further research. 
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The generalized coordinates are shown above.  To keep the model simple we will neglect the mass 
of the throwing arm.  This leaves only two masses: the counterweight and the projectile.  The 
simplest place to locate the global origin is at the intersection of the ramp and the vertical track.  The 
location of the counterweight is given by (0, h) and the projectile is (xp, yp).  The throwing arm makes 
an angle θ with the horizontal and the sling is at angle ψ (positive angles are counterclockwise). 
 
Since the counterweight is constrained to ride in the vertical track, its x coordinate is always zero.  
Eliminating it from the set of generalized coordinates leaves us with a total of five.  When the 
projectile is on the ramp, we need four constraint equations, and when it is above the ramp we need 
three. 

Equations of Motion for the Floating-Arm Trebuchet 
The simplest way to develop equations of motion for this system is to use Lagrange’s equations, 
with constraints enforced using Lagrange multipliers.  The first step is to create position vectors to 
each body in the system. 
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And the velocity of each mass is found by differentiating with respect to time. 
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Thus, the total kinetic energy of the system is 
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where I is the moment of inertia of the throwing arm.  The potential energy of the system is simple 
to formulate with our chosen set of generalized coordinates 
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Thus, the total Lagrangian of the system is 
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Unconstrained Lagrange’s Equations 
To find the unconstrained Lagrange’s equations, we must take partial derivatives of the Lagrangian 
with respect to each generalized coordinate. 
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Using these derivatives, we may solve for the inertia matrix and applied force vectors on the system 
(see the preceding document for further details). 
 
 

' =
())
)*�� 0 0 0 00 � 0 0 00 0 �� 0 00 0 0 �� 00 0 0 0 0+,,

,-
 . + / =

012
13−���00−���0 415

16
 (1) 

   

Constraint Equations 
There are four constraint conditions on the system, each of which will be explained in detail below. 
 

1. The arm rests on the fixed roller at the beginning of the launch sequence. 
2. In the middle of the launch sequence, the moving roller (attached to the arm) comes to rest 

on the horizontal track. 
3. At the beginning of the launch sequence, and for a short period of time, the projectile slides 

along the launch ramp. 
4. The end of the throwing arm is connected to the top end of the sling. 



 
 

1. Arm rests on fixed roller 
The figure above shows the throwing arm poised for launch.  To simplify matters, we choose to 
model the constraint as a fixed pin in a moving slot.  In reality, the arm is offset vertically by the 
radius of the roller and the thickness of the arm, but the pin-in-slot serves as a good first 
approximation.  The fixed pin is at a vertical distance H and horizontal distance W from the origin.  
Define a vector u parallel to the arm, and v perpendicular to the arm.  Both of these vectors rotate 
with the arm, and v can be written as 
 � = �− sin �cos � � 
 
In order for the pin to remain in the slot, the vector from the counterweight to the fixed pin must 
be perpendicular to v: 
 ��< · � = 0 
 
where r1P is found by subtracting rP from r1. 
 ��< = � −>? − ℎ� 
 
Thus, the fixed pin in moving slot can be written 
 > sin � + @? − ℎA cos � = 0 
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2. Arm rests on moving roller 
Approximately midway through the launch sequence the arm roller comes to rest on the horizontal 
track.  This is also modeled as a pin in slot, though here the slot is fixed and the pin (at point Q) 
moves with the arm.  In order for the pin to remain in the slot, the vertical coordinate of point Q 
(on the arm) must remain at the height of the slot, H.  This can be written 
 ℎ − B sin � − ? = 0 
 
 
 

 
 

3. Projectile Slides on Ramp 
The figure above shows the trebuchet at the beginning of the launch cycle, with the projectile resting 
on the ramp.  As before, we model this as a pin (the projectile) moving in a fixed slot (the ramp).  
Define a vector w perpendicular to the ramp, whose angle is λ.  Since we have defined the origin as 
the intersection of the ramp and the vertical slot, the constraint equation is particularly simple to 
write 
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�� · C = 0 
 
where 
 C = �sin Dcos D� 
 
Completing the dot product gives 
 	
 sin D + �
 cos D = 0 
 
Note that if there is no ramp (i.e., if the ramp is horizontal), the above equation simplifies to  
 �
 = 0 
 
 
 
 

 
 

4. Pin joint between arm and sling 
The figure above gives a vector diagram of the constraint between the arm and the sling.  Adding 
the vectors in the loop gives 
 �� − �E� + �E� − �� = 0 
 
This can be written longhand as 
 � −F� cos � − 	
 + FG cos &ℎ − F� sin � − �
 + FG sin &� = 0 
 
where L2 is the length of the arm and L3 is the length of the sling. 
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A “Menu” of Constraint Equations 
Only a subset of the constraint equations are active at any time during the launch, although the 
constraint between sling and arm is always present.  There are four possible constraint 
configurations for the trebuchet: 
 

1. Arm-sling constraint, arm on fixed roller, projectile on ramp. 
2. Arm-sling constraint, arm roller on fixed track, projectile on ramp. 
3. Arm-sling constraint, arm on fixed roller, projectile above ramp. 
4. Arm-sling constraint, arm roller on fixed track, projectile above ramp. 

 
Determining which configuration the trebuchet is in at a given moment is one of the interesting 
aspects of modeling the system.  As stated earlier, the arm-sling constraint is always active.  The arm 
switches from being supported by the fixed roller to the moving roller when the height of the 
moving pivot, Q, is less than or equal to the height of the horizontal track.  In other words: 
 ℎ − B sin � > ? → arm on fixed roller ℎ − B sin � ≤ ? → arm roller on fixed track 
 
As with the fixed-arm trebuchet, the projectile is said to have left the ramp when the Lagrange 
multiplier corresponding to its constraint changes sign.  We now have enough information to 
simulate the floating arm trebuchet by solving the equations of motion given in Equation (42) in the 
previous document: 
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The tables on the following page give the constraint vectors, f, the Jacobian matrices, 
ZUZV, and the 

acceleration vectors, γ,  for each of the configurations listed above.  The mass matrix and force 
vector are found in Equation (1) above; these do not depend upon the current constraint situation.  

At each time step, the code solves for accelerations, V# , and constraint forces λ.  It then checks to 
ensure that the constraint vector, f, is satisfied.  If it is not, a simple Newton-Raphson routine is 
used to bring the constraints into compliance.  This process continues until a launch condition has 
been reached. 
 
 
 

  



Constraint Equations, Jacobian Matrices and Acceleration Vectors 
 

 Constraint Vector Acceleration Vector 
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 Jacobian Matrix 

1 

 

_ 0 F� sin � −1 0 −FG sin &1 −F� cos � 0 −1 FG cos &− cos � > cos � − @? − ℎA sin � 0 0 00 0 sin D cos D 0 ` 
 

2 

 

_0 F� sin � −1 0 −FG sin &1 −F� cos � 0 −1 FG cos &1 −B cos � 0 0 00 0 sin D cos D 0 ` 
 

3 

 

a 0 F� sin � −1 0 −FG sin &1 −F� cos � 0 −1 FG cos &− cos � > cos � − @? − ℎA sin � 0 0 0 b 
 

4 

 

a0 F� sin � −1 0 −FG sin &1 −F� cos � 0 −1 FG cos &1 −B cos � 0 0 0 b 
 

 
 


